Abstract

This review provides an in-depth discussion of the development, principlesand utility of nanopore sequencing technology and its diverse applications in the identification of various pulmonary pathogens. We examined the emergence and advancements of nanopore sequencing as a significant player in this field. We illustrate the challenges faced in diagnosing mixed infections and further scrutinize the use of nanopore sequencing in the identification of single pathogens, including viruses (with a focus on its use in epidemiology, outbreak investigation, and viral resistance), bacteria (emphasizing 16S targeted sequencing, rare bacterial lung infections, and antimicrobial resistance studies), fungi (employing internal transcribed spacer sequencing), tuberculosis, and atypical pathogens. Furthermore, we discuss the role of nanopore sequencing in metagenomics and its potential for unbiased detection of all pathogens in a clinical setting, emphasizing its advantages in sequencing genome repeat areas and structural variant regions. We discuss the limitations in dealing with host DNA removal, the inherent high error rate of nanopore sequencing technology, along with the complexity of operation and processing,while acknowledging the possibilities provided by recent technological improvements. We compared nanopore sequencing with the BioFire system, a rapid molecular diagnostic system based on polymerase chain reaction. Although the BioFire system serves well for the rapid screening of known and common pathogens, it falls short in the identification of unknown or rare pathogens and in providing comprehensive genome analysis. As technological advancements continue, it is anticipated that the role of nanopore sequencing technology in diagnosing and treating lung infections will become increasingly significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call