Abstract

In vitro generation of red blood cells (RBCs) from hematopoietic stem cells (HSCs) has been reported, but the collection of 1 × 10(5) to 1 × 10(6) CD34+ cells present in cord and peripheral blood is too small for expansion to 1 × 10(12) cells in 1 unit of RBCs. We transduced JAK2V617F gene, the most common mutation with polycythemia vera (PV), into cord blood-derived CD34+ cells. This PV model was expected to increase cell proliferation without the addition of erythropoietin (EPO) in early phase of differentiation. Empty vector (control), wild-type JAK2 (wJAK2), and mutant JAK2V617F (mJAK2) were transduced into CD34+ cells using a lentivirus system. The CD34+ cells were then differentiated to the RBCs in a culture system. The cells were analyzed for cell number, differential count, and morphologic changes. Cultured RBCs were tested for oxygen equilibrium. wJAK2- and mJAK2-transduced cells showed higher proliferation capacity until Day 21 than control cells; interestingly, only mJAK2-transduced cells were highly increased on Day 7 during EPO-free culture. However, both wJAK2- and mJAK2-tranduced cells had more delayed differentiation than control, but they had a higher portion of completely matured RBCs and orthochromatic erythroblasts. Furthermore, mJAK2-tranduced cells showed more differentiation into RBCs than wJAK2-transduced cells and they had a normal hemoglobin dissociation curve. This is the first trial to use a PV erythropoiesis model for RBC differentiation from stem cells. The transduction of HSCs with mJAK2 increased their proliferation capacity in EPO-free culture conditions. This model may also be useful for investigating the pathogenesis of PV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call