Abstract

The main focus of present study was to demonstrate the possible generation sources of metal contamination in soil. The only authorized waste disposal site at Rajbandh located at Khulna in Bangladesh. To this endeavors, total sixty soil samples were collected at a depth of 0-30 cm from the existing ground surface and the relevant metal elements of Al, As, Ba, Ca, Cd, Cr, Co, Cu, Fe, Hg, K, Mn, Na, Ni, Pb, Sb, Sc, Sr, Ti, V and Zn were measured through standard methods in laboratory. Desired results for normality test obtained from normal QQ plot using XLSTAT. Almost all the metal elements were normally distributed in both the seasons. Multivariate statistics such as Pearson’s correlation, principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) were performed using XLSTAT to show the correlation between metal elements and their possible generation sources. Results of multivariate statistics revealed that almost all the metal elements were strongly correlated indicating same generation sources. In addition, results of PCA and AHC depicted that almost all the metal elements in soil derived from anthropogenic/human activities; least number of metal elements from natural sources as well as from both the natural and anthropogenic sources. Proper identification and control of possible generation sources of metal elements may reduce the threat of soil contamination due to metal elements in waste disposal site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.