Abstract

Two multivariate statistics based damage detection algorithms are explored in conjunction with optical fiber sensors for long-term application of Structural Health Monitoring. Two newly developed data driven methods are investigated, for bridge health monitoring, here based on strain data captured by Fiber Bragg Grating (FBG) sensors from 4-span bridge model. The most common and critical damage scenarios were simulated on the representative bridge model equipped with FBG sensors. Acquired strain data were processed by both Moving Principal Component Analysis (MPCA) and Moving Cross Correlation Analysis (MCCA). The efficiency of FBG sensors, MPCA and MCCA for detecting and localizing damage is explored. Based on the findings presented in this paper, the MPCA and MCCA coupled with FBG sensors can be deemed to deliver promising results to observe and detect both local and global damage implemented on the bridge structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.