Abstract
Non-destructive techniques aided by machine learning models are widely implemented in food analysis. To discriminate between ‘special’ and ‘traditional’ classes of green coffee beans, an advanced multispectral imaging technique based on reflectance and autofluorescence data was employed in combination with four machine learning algorithms (SVM, RF, XGBoost, and CatBoost). Of the four algorithms, SVM showed superior accuracy (0.96) for the test dataset. Analysis using PCA and SVM algorithms showed that autofluorescence data from excitation/emission combination of 405/500 nm contributed most to the discrimination of special green coffee from the traditional class. Fluorophores that can be linked to green fluorescence, namely catechin, caffeine and 4-hydroxybenzoic, synapic and chlorogenic acids, were found to have a considerable influence on the differentiation of specialty and traditional coffees. Analysis based on multispectral autofluorescence imaging combined with SVM models was proven to be a valuable tool for future applications in the food industry for the non-destructive and real-time classification of special and traditional green coffee.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.