Abstract
Linearly constrained minimum variance beamformers are highly effective for analysis of weakly correlated brain activity, but their performance degrades when correlations become significant. Multiple constrained minimum variance (MCMV) beamformers are insensitive to source correlations but require a priori information about the source locations. Besides the question whether unbiased estimates of source positions and orientations can be obtained remained unanswered. In this work, we derive MCMV-based source localizers that can be applied to both induced and evoked brain activity. They may be regarded as a generalization of scalar minimum-variance beamformers for the case of multiple correlated sources. We show that for arbitrary noise covariance these beamformers provide simultaneous unbiased estimates of multiple source positions and orientations and remain bounded at singular points. We also propose an iterative search algorithm that makes it possible to find sources approximately without a priori assumptions about their locations and orientations. Simulations and analyses of real MEG data demonstrate that presented approach is superior to traditional single-source beamformers in situations where correlations between the sources are significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.