Abstract

Abstract In order to simulate the deep water channel distribution of the Oligocene O73 sand layers in the Plutonio oilfield in Angola of west Africa. Based on the shallow high frequency seismic data, the morphology and quantitative scale of shallow channel were studied. By analogy, this study was used as guidance for the scale statistics of single deep channel sandstone, and a three dimensional quantitative training image was created. On this basis, the deep water channel distribution was simulated using multi-point geo-statistics Snesim algorithm and tested by real drilling. The results show that the width and depth of shallow single channel are in linear correlation, while the tortuosity is negatively correlated with the slope gradient exponentially. The average depth of single channel sandstone was 13 meters and the average width was 162 meters. It is concluded that the deep water channel distribution simulation results consist with well data obtained through high resolution gradient impedance inversion, extraction of shallow channel geologic body as 3-D quantitative training image and simulation using Snesim algorithm. The spatial morphology and size of different channels are constrained by the quantitative characteristics of training image, and can reproduce geometric characteristics and spatial structure of deep water channels and levees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.