Abstract

The generalized likelihood uncertainty estimation (GLUE) framework has been widely used in hydrologic studies. However, the extensive random sampling causes a high computational burden that prohibits the efficient application of GLUE to costly distributed hydrologic models such as the soil and water assessment tool (SWAT). In this study, a multimodal optimization algorithm called isolated- speciation-based particle swarm optimization (ISPSO) is employed to take samples from the search space. A comparison between the ISPSO- GLUE, proposed here, and traditional GLUE approaches shows that the two approaches generate similar uncertainty bounds, but that the convergence rate to stable uncertainty bounds is much faster for ISPSO-GLUE than for GLUE. That is, ISPSO-GLUE needs a much smaller number of samples than GLUE to arrive at a very similar answer. Although ISPSO-GLUE slightly underestimated the prediction uncertainty and missed a number of observed values, the proposed approach is considered to be a good alternative to the typical GLUE approach that employs random sampling. DOI: 10.1061/(ASCE)WR.1943-5452.0000330. © 2014 American Society of Civil Engineers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call