Abstract

This paper presents the design and analysis of a permanent magnet (PM) transverse flux motor with soft magnetic composite (SMC) core by applying multi-level multi-domain modeling. The design is conducted in two levels. The upper level is composed of a group of equations which describe the electrical and mechanical characteristics of the motor. The lower level consists of two domains: electromagnetic analysis and thermal calculation. The initial design, including structure, materials and major dimensions, is determined according to existing experience and empirical formulae. Then, optimization is carried out at the system level (the upper level) for the best motor performance by optimizing the structural dimensions. To successfully deal with such a multi-level multi-domain optimization problem, an effective modeling with both high computational accuracy and speed is required. For accurately computing the key motor parameters, such as back electromotive force, winding inductance and core loss, magnetic field finite element analysis is performed. The core loss in each element is stored for effective thermal calculation, and the winding inductance and back EMF are stored as a look-up table for effective analysis of the motor's dynamic performance. The presented approach is effective with good accuracy and reasonable computational speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call