Abstract

Some 434 stream sediment samples were collected in Central Japan for a nationwide geochemical mapping project. The resulting geochemical maps are compared with geological, mineral resource and land use maps. Spatial distribution patterns of elemental concentrations in stream sediments are determined mainly by surface geology. Elevated elemental concentrations of alkali elements, Be, Ga, Y, Cs, Ba, lanthanide (Ln), Tl, Th, and U are consistent with outcrop areas of granite, felsic volcanic rock, and accretionary complexes. High concentrations of MgO, Al 2O 3, P 2O 5, CaO, 3d transition metals, Zn, and Sr are present in sediments supplied from mafic volcanic rock, high pressure metamorphic rocks, and mafic-ultramafic rocks in accretionary complexes. A procedure is established and guidelines are set for a statistical test suite for geochemical mapping. Analysis of variance (ANOVA) and multiple comparison tests are effective for comparing means among the data subsets that are classified by parent lithological materials. Among the many procedures that have been proposed for multiple comparison tests, the Holm procedure was selected for this study. Multiple comparison statistically confirmed the correspondence of elemental abundance in stream sediments with surface geologies. However, visual interpretation of some elements is inconsistent with results of multiple comparison. According to the Holm procedure, the U content in stream sediments is affected not by granite, but by felsic volcanic rock. The Holm procedure clarifies that As, Sb, and Bi, that are not explained by the presence of mineral deposits, are enriched significantly in samples derived from accretionary complexes. Hydrothermal activity on the ocean floor might affect their levels of enrichment. Significant enrichment of Cu, Zn, Cd, Sn, Sb, Hg, and Pb observed in urban areas are also supported by the Holm procedure. The authors inferred that these sediment samples had been contaminated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call