Abstract

In this paper, the multidisciplinary design optimization based on Approximation Model for supercharge turbo is studied. Temperature and pressure loads are transferred to the solid model by distance-weighted function, and structure deformation is transferred to aerodynamic model by mesh regenerated method in order to avoid mesh aberration. The Multidisciplinary analysis (MDA) model of supercharge turbo considering aerodynamic, heat transfer, strength and vibration is obtained on the basis of information transferring, which is solved by iterated three times. The Kriging Approximation Model which fits the sample space accurately is employed in the MDO process to reduce computational cost. Results show that performance of supercharge turbo is improvement on the MDO system based on Approximation Model, meanwhile the computational time of the optimization system is saved. Also, this method is suitable for other Multidisciplinary Design Optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call