Abstract

Accurate margin delineation and safe maximal resection of glioma is one of the most challenging problems of neurosurgery, due to its close resemblance to normal brain parenchyma. However, different intraoperative visualization methods have been used for real-time intraoperative investigation of the borders of the resection cavity, each having advantages and limitations. This preliminary study was designed to simulate multi-wavelength photoacoustic imaging for brain tumor margin delineation for maximum safe resection of glioma. Since the photoacoustic signal is directly related to the amount of optical energy absorption by the endogenous tissue chromophores such as hemoglobin; it may be able to illustrate the critical structures such as tumor vessels during surgery. The simulation of the optical and acoustic part was done by using Monte-Carlo and k-wave toolbox, respectively. As our simulation results proved, at different wavelengths and depths, the amount of optical absorption for the blood layer is significantly different from others such as normal and tumoral tissues. Furthermore, experimental validation of our approach confirms that, by using multi-wavelengths proportional to the depth of the tumor margin during surgery, tumor margin can be differented using photoacoustic imaging at various depths. Photoacoustic imaging may be considered as a promising imaging modality which combines the spectral contrast of optical imaging as well as the spatial resolution of ultrasound imaging, and may be able to delineate the vascular-rich glioma margins at different depths of the resection cavity during surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.