Abstract

A large number of studies have shown that oolitic hematite is an iron ore that is extremely difficult to utilize because of its fine disseminated particle size, high harmful impurity content and oolitic structure. To recover iron from oolitic hematite, we developed a novel multistage dynamic magnetizing roasting technology. Compared with traditional magnetizing roasting technologies, this novel technology has the following advantages: firstly, the oolitic hematite is dynamically reduced in a multi-stage roasting furnace, which shortens the reduction time and avoids ringing and over-reduction; secondly, the novel dynamic magnetizing roasting technology has strong raw material adaptability, and the size range of raw materials can be as wide as 0–15 mm; thirdly, the roasting furnace adopts a preheating-heating process, and the low-calorific value blast furnace gas can be used as the fuel and reductant, which greatly reduces the cost. The actual industrial production data showed that the energy consumption in the roasting process can be less than 35 kg of standard coal per ton of raw ore. The iron grade of the concentrate and iron recovery reached 65% and 90%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call