Abstract

Article history: Received October 25, 2015 Received in revised format: February 12, 2016 Accepted February 22, 2016 Available online Februray 22 2016 The present study endeavors to show an application of the multi objective optimization on the basis of ratio analysis (MOORA) method and technique for order performance by similarity to ideal solution (TOPSIS) method to select optimal process parameters in sheet hydroforming process. The right choice of the process parameters is critical to produce a final part with proper quality. In order to meet this characteristic, the important properties are the cup final thickness (FT), required forming force (FF) and radial stress (RS) at cup wall region. Nine alternatives for selecting the process parameters were taken into consideration based on Taguchi L9 orthogonal array. The limit drawing ratio (LDR), maximum pressure and prebulge pressure were selected as input variables. To solve the problem of process parameters’ selection, the two mentioned methods were used. A compromised weighting approach composed of Entropy and analytic hierarchy process (AHP) methods were used to weight all criteria. The alternatives ranking were performed using MOORA and TOPSIS methods and then the results were compared. The results achieved in both of the assessment represent that the alternative number 3, leads to the best multi performance features of the process among the 9 experiments. In this experiment LDR is 1.81, maximum pressure and prebulge pressure are 37 MPa and 15 MPa, respectively. Growing Science Ltd. All rights reserved. 6 © 201

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.