Abstract

Silicone oil (SO) is a safe and widely used intraocular tamponade agent for treating complicated vitreoretinal diseases, such as retinal detachments (RRDs) with inferior proliferative vitreoretinopathy (PVR). However, as the human vitreous cavity is irregularly shaped, it is difficult to predict the area of the inferior retina covered with SO and the retro-oil fluid currents in each patient. Here, we performed fluid simulation analysis using the moving particle semi-implicit method on the oil cover rates and absolute velocity gradient of retro-oil fluid to the retina using vitreous cavity models derived from magnetic resonance imaging of patients to determine the appropriate amount of SO and postoperative position to achieve a sufficient tamponade effect on the inferior retina. In all seven vitreous cavity models tested, the inferior quadrant of the retina was completely covered by SO in more positions and the absolute velocity gradient of the retro-oil fluid in contact with the retinal wall caused by eye and head movements was lower when the vitreous cavity was filled with 95% SO and 5% retro-oil fluid versus 80% SO and 20% retro-oil fluid. Taken together, these findings have clinical implications for the treatment of complicated RRDs with inferior PVR requiring SO tamponade.

Highlights

  • Silicone oil (SO) is a safe and widely used intraocular tamponade agent for treating complicated vitreoretinal diseases, such as retinal detachments (RRDs) with inferior proliferative vitreoretinopathy (PVR)

  • We demonstrated that the inferior retina was completely covered by SO in more positions when the vitreous cavity was filled with the combination of 95% SO and 5% retro-oil fluid than when the vitreous cavity was willed with the combination of 80% SO and 20% retro-oil fluid

  • We found that the inferior retina was not covered completely by the SO depending on the position even if the vitreous cavity was filled with 95% SO due to the existence of the contact angle and the meniscus

Read more

Summary

Introduction

Silicone oil (SO) is a safe and widely used intraocular tamponade agent for treating complicated vitreoretinal diseases, such as retinal detachments (RRDs) with inferior proliferative vitreoretinopathy (PVR). We performed fluid simulation analysis using the moving particle semi-implicit method on the oil cover rates and absolute velocity gradient of retro-oil fluid to the retina using vitreous cavity models derived from magnetic resonance imaging of patients to determine the appropriate amount of SO and postoperative position to achieve a sufficient tamponade effect on the inferior retina. In all seven vitreous cavity models tested, the inferior quadrant of the retina was completely covered by SO in more positions and the absolute velocity gradient of the retro-oil fluid in contact with the retinal wall caused by eye and head movements was lower when the vitreous cavity was filled with 95% SO and 5% retro-oil fluid versus 80% SO and 20% retro-oil fluid Taken together, these findings have clinical implications for the treatment of complicated RRDs with inferior PVR requiring SO tamponade. No previous report has analyzed intraocular fluid currents using particle methods and the vitreous cavity shapes of real patients

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call