Abstract

BACKGROUNDConventional plain X-ray images of rats, the most common animals used as degeneration models, exhibit unclear vertebral structure and blurry intervertebral disc spaces due to their small size, slender vertebral bodies.AIMTo apply molybdenum target X-ray photography in the evaluation of caudal intervertebral disc (IVD) degeneration in rat models.METHODSTwo types of rat caudal IVD degeneration models (needle-punctured model and endplate-destructed model) were established, and their effectiveness was verified using nuclear magnetic resonance imaging. Molybdenum target inspection and routine plain X-ray were then performed on these models. Additionally, four observers were assigned to measure the intervertebral height of degenerated segments on molybdenum target plain X-ray images and routine plain X-ray images, respectively. The degeneration was evaluated and statistical analysis was subsequently conducted.RESULTSNine rats in the needle-punctured model and 10 rats in the endplate-destructed model were effective. Compared with routine plain X-ray images, molybdenum target plain X-ray images showed higher clarity, stronger contrast, as well as clearer and more accurate structural development. The McNemar test confirmed that the difference was statistically significant (P = 0.031). In the two models, the reliability of the intervertebral height measured by the four observers on routine plain X-ray images was poor (ICC < 0.4), while the data obtained from the molybdenum target plain X-ray images were more reliable.CONCLUSIONMolybdenum target inspection can obtain clearer images and display fine calcification in the imaging evaluation of caudal IVD degeneration in rats, thus ensuring a more accurate evaluation of degeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.