Abstract

Metribuzin (MTZ) is an important herbicide widely used in fields and represents a big threat to the environment and health. Herein, an electrochemical sensor was designed for its detection in commercial product (Egyscor® 70%), spiked tomatoes and potatoes samples with recovery values ranging from 97.12 to 103.41%. Bulk-polymerized MTZ molecularly imprinted polymer (MIP) was developed, using itaconic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker) at an optimum molar ratio 1:5:30, respectively. Differential pulse voltammetry was used to examine the optimization variables of the MIP based sensor such as the variation of (template: monomer: cross-linker) ratio, accumulation time, multi walled carbon nanotubes amount, pH and scan rate, while cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the sensor. The sensor showed selective adsorption ability and a good linearity over the concentration range of 0.2 ng/mL to 21.429 µg/mL, with LOD and LOQ of 0.1 pg/mL and 0.3 pg/mL, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.