Abstract

Application of molecular modeling approaches has potential to contribute to rational drug design. These approaches may be especially useful when attempting to elucidate the structural features associated with novel drug targets. In this study, molecular docking and molecular dynamics were applied to studies of inhibition of the human motor protein denoted HsEg5 and other homologues in the BimC subfamily. These proteins are essential for mitosis, so compounds that inhibit their activity may have potential as anticancer therapeutics. The discovery of a small-molecule cell-permeable inhibitor, monastrol, has stimulated research in this area. Interestingly, monastrol is reported to inhibit the human and Xenopus forms of Eg5, but not those from Drosophila and Aspergillus. In this study, homology modeling was used to generate models of the Xenopus, Drosophila, and Aspergillus homologues, using the crystal structure of the human protein in complex with monastrol as a template. A series of known inhibitors was docked into each of the homologues, and the differences in binding energies were consistent with reported experimental data. Molecular dynamics revealed significant changes in the structure of the Aspergillus homologue that may contribute to its relative insensitivity to monastrol and related compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call