Abstract

Increasingly, the microbiological scientific community is relying on molecular biology to define the complexity of the gut flora and to distinguish one organism from the next. This is particularly pertinent in the field of probiotics, and probiotic therapy, where identifying probiotics from the commensal flora is often warranted. Current techniques, including genetic fingerprinting, gene sequencing, oligonucleotide probes and specific primer selection, discriminate closely related bacteria with varying degrees of success. Additional molecular methods being employed to determine the constituents of complex microbiota in this area of research are community analysis, denaturing gradient gel electrophoresis (DGGE)/temperature gradient gel electrophoresis (TGGE), fluorescent in situ hybridisation (FISH) and probe grids. Certain approaches enable specific aetiological agents to be monitored, whereas others allow the effects of dietary intervention on bacterial populations to be studied. Other approaches demonstrate diversity, but may not always enable quantification of the population. At the heart of current molecular methods is sequence information gathered from culturable organisms. However, the diversity and novelty identified when applying these methods to the gut microflora demonstrates how little is known about this ecosystem. Of greater concern is the inherent bias associated with some molecular methods. As we understand more of the complexity and dynamics of this diverse microbiota we will be in a position to develop more robust molecular-based technologies to examine it. In addition to identification of the microbiota and discrimination of probiotic strains from commensal organisms, the future of molecular biology in the field of probiotics and the gut flora will, no doubt, stretch to investigations of functionality and activity of the microflora, and/or specific fractions. The quest will be to demonstrate the roles of probiotic strains in vivo and not simply their presence or absence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.