Abstract

SummaryBackgroundThis study aimed to introduce an improved surgical procedure to reduce the incidence of urinary tract complications after renal transplantation in mice using a modified bladder patch-to-bladder anastomosis technique.MethodsRenal isotransplantation was performed in 28 male C57BL/6 mice. The urinary tract was reconstructed with a ureteral anastomosis between the donor’s small bladder patch and the recipient’s bladder. The bladder patch was secured through a cystotomy in the recipient’s bladder mucosa and seromuscular layers, which were sutured in a double-layer manner. The food intake and survival of mice were recorded for 100 days in addition to monitoring appearance, weight, and symptoms of pain. On post-transplantation day 7, the native kidney in the recipients was removed and the transplanted kidney assessed visually. Urine leakage from the transplanted graft was monitored by assessing the degree of ascites.ResultsThe success rate of renal transplantation was 82 % (23 of 28 cases). Arterial thrombosis at the site of anastomosis occurred in 3 cases (11 %) and hemorrhagic shock in 2 cases (7 %). The mean ± SD time of the operation in recipients was 81 ± 5 min. No complications were noted in the successfully transplanted animals.ConclusionsThe modified procedure of a small bladder patch-to-bladder with double-layer suturing minimizes complications after renal transplantation in mice while requiring the same operating time as other approaches such as ureter to bladder anastomosis, which are associated with more complications.

Highlights

  • IntroductionThe mouse kidney transplantation model [1,2,3] is an important translational research tool because it mimics the clinical features of kidney transplantation and allows the controlled investigation of pharmacological interventions [4, 5] as well as (patho)physiological [6, 7], biological [8,9,10,11,12,13], and biochemical [14, 15] processes

  • The modified procedure of a small bladder patch-to-bladder with double-layer suturing minimizes complications after renal transplantation in mice while requiring the same operating time as other approaches such as ureter to bladder anastomosis, which are associated with more complications

  • The mouse kidney transplantation model [1,2,3] is an important translational research tool because it mimics the clinical features of kidney transplantation and allows the controlled investigation of pharmacological interventions [4, 5] as well asphysiological [6, 7], biological [8,9,10,11,12,13], and biochemical [14, 15] processes

Read more

Summary

Introduction

The mouse kidney transplantation model [1,2,3] is an important translational research tool because it mimics the clinical features of kidney transplantation and allows the controlled investigation of pharmacological interventions [4, 5] as well as (patho)physiological [6, 7], biological [8,9,10,11,12,13], and biochemical [14, 15] processes. The advent of genetically modified mice enabled the investigation of immunological mechanisms that play a role in transplantation outcome and graft rejection [16, 17]. Very useful for kidney transplantation research, the murine renal transplantation model is currently performed in only a few transplantation centers in the world, due to the very long learning curve and the technical complexity of the procedure, which results in high mortality rates [18]. In addition to the vascular anastomosis following the transplantation procedure [18], the urinary tract reconstruction (UTR) constitutes a significant technical challenge. A flawed UTR can cause urinary tract complications and impair graft quality, function, and viability. Minimizing the complexity of the UTR is essential to reduce procedure-related complications, lower

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.