Abstract

Considering the compressibility of the cavity in the cavitating flow, this paper presents a modified κ-ω model for predicting the cavitating flow in a centrifugal pump, in which the modified κ-ω model and Schnerr-Sauer cavitation model were combined with ANSYS CFX. To evaluate the modified and standard κ-ω models, numerical simulations were performed with these two models, respectively, and the calculation results were compared with the experimental data. Numerical simulations were executed with three different values of the flow coefficient, and the simulation results of the modified κ-ω model showed agreement with most of the experimental data. The cavitating flow in the centrifugal pump obtained by the modified κ-ω model at the design flow coefficient of 0.102, was analyzed. When the cavitation number decreases, the cavity initially generates on the suction side of the blade near the leading edge and then expands to the outlet of the impeller, and the decrease of the total pressure coefficient mainly occurs upstream of the impeller passage, while the downstream remains almost unaffected by the development of cavitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call