Abstract

The dynamic properties of the car's suspension largely depend on the damping that results from the state of the shock absorbers. Their technical condition is essential for vehicle occupants’ comfort and traffic safety. It changes with the time and intensity of use of the vehicle. Therefore, adequate methods of non-destructive (diagnostic) testing of suspension damping have been sought for many years. The on-vehicle tests are particularly useful thanks to their low cost and short test duration time. The newest method is the ‘theta’ method which is the subject of the presented article. Notation ‘theta’ usually means relative damping (damping ratio) in the vibrating system. The paper asses four variants of the method. Two versions come from modal analysis and are also known as the ‘peak-picking method’ or ‘half-power method’. Two other versions are described in cited patent documentations. Three linear ‘quarter car' models with their description in the frequency domain were used to assess mentioned variants of the ‘theta’ method. Calculations were made for two typical datasets corresponding to the front and rear suspension system of a medium-class motor car. This provided grounds for general qualitative and (within a limited scope) quantitative assessment of the usefulness of individual variants of the method under analysis and for comparisons between them. The paper is to help in choosing the variant of the ‘theta’ method that would most likely find the application and that might be recommended to manufacturers and would-be purchasers of diagnostic suspension testers. The author has also highlighted the importance of possible further research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call