Abstract
Injection of surfactant and polymer slug is among the most effective chemical enhanced oil recovery processes. The only problem encountered with the surfactant polymer (SP) flooding is the loss of surface-active agents that reduce the efficiency of surfactants in the chemical slug. Various attempts to modify SP flooding have been made previously so that the surfactant loss due to adsorption could be reduced. Nanoparticles (NPs) are one of the most effective ways of reducing surfactant adsorption as surfactant particles are held in the liquid phase by nanoparticles, resulting in lower surfactant losses due to adsorption. However, the high cost of the NPs limits their use on the field scale. To encounter this problem, the present study focuses on the application of the manganese dioxide NPs, synthesized through a green route that is economically viable. These NPs are found to be cost-effective as compared to commercially available NPs as well as the synthesis of these NPs does not require the use of toxic chemicals. The 1000ppm NPs effectively reduced the surfactant adsorption by 46%. The surface tension was lowered from 29.4 to 26.1 mN/m when 1000ppm NPs were applied to 2500ppm surfactant solution. Also, the nanoparticles were found to increase the viscosity of the chemical slug by increasing the solid particles present in the slug. The sand pack flooding experiments were carried out to assess the crude oil mobilization ability of the NPs assisted SP flooding. The oil recovery was found to increase from 5% of the original oil in place, resulting in ~ 75% of the crude oil recovery, which was only ~ 70% when NPs were not introduced into the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.