Abstract
The Mn-Fe layered double hydroxide using chloride in the interlayer anion was successfully synthesized using chemical co-precipitation methods. The Mn-Fe LDH was then applied as adsorbent for arsenic removal from synthetic acid mine drainage. The adsorbent characterizations of SEM and XRD analysis showed that the Mn-Fe LDH had many different functional groups and a high specific surface area for the adsorption processes. The morphological structure of Mn-Fe LDH by the SEM-EDS analysis method shows a round shape structure with a particle size of about 1 μm, and the XRF analysis method shows that the Mn and Fe elements dominate more than other components. Batch adsorption experimental conducted using the Mn-Fe LDH with the interlayer anion of chloride as an adsorbent to study the effect of contact time, equilibrium pH, and temperature on the arsenic removal. The Mn-Fe LDH showed high adsorption uptake capacity and selectivity for the arsenic in the synthetic acid mine drainage. The adsorption and ion exchange between interlayer chloride anions in Mn-Fe LDH and As (V) solution was the main adsorption mechanism. Therefore, the Mn-Fe LDH can be used as an adsorbent in water and wastewater treatment. In contrast, this research has the potential to be processed and developed into advanced materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.