Abstract
Confronted with the problem of how to conduct a complete fatigue analysis of the Tube Plate (TP) of Tubular and Shell Heat Exchangers and particularly of the Steam Generators equipping nuclear power plants of the Pressurized Water Reactor type (PWR), analysts have developed a method to analyse stress in perforated flat and thick Tube Plates with square penetration (crate) patterns, and in particular to analyse several specific zones such as the Interface Zones and various Effects, such as the Secondary (or Shell) Thermal Gradient Effect (STG Effect), the Thermal Gradient in the No-Tube Lane Effect (TGL Effect) and their interactions. The benefit of the approach is that it enables to analyze mechanical and thermal stress calculated using a full 3D Finite Element model incorporating an equivalent solid and the different Interface Zones, and allowing simulating the specific Thermo-Mechanical Effects. The Interface Zones (IZs) are those between the perforated and non-perforated area, the STG Effect is due to the strong gradient near the Secondary (or Shell) Side surface, the TGL Effect is produced by a temperature gradient across the No-Tube Lane. The method used for the fatigue analysis is based on a “Partitioning Stress Method” by means of which the stress induced by the various load types — mechanical loads, global thermal loads, local thermal effects (STG and TGL Effects), and local geometrical effects (IZs) — are first treated separately and then recombined with their appropriate Stress Multiplier Functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.