Abstract

Microwave photoconductivity decay (µ-PCD) method was applied to evaluate the effects of chemical composition and Ar+ plasma induced damage on the bulk and the surface states in amorphous In-Ga-Zn-O (a-IGZO) films. It was found that the peak reflectivity signal in the photoconductivity response increased with decreasing the Ga content, and had a strong correlation with the a-IGZO transistor performances. In addition, the peak reflectivity signals obtained after various Ar+ plasma treatment duration were well correlated with the transistor characteristics. With Ar+ plasma treatment, the peak reflectivity signal decreased in accordance with degradation of transistor characteristics. The µ-PCD method was found to be a very useful tool not only to evaluate the bulk and the surface states, but also to predict the performance of a-IGZO transistors subjected to various plasma processes in the production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.