Abstract

In order to study the antithrombotic effect and mechanism of tetramethylpyrazine (TMA). In this study, we developed a microfluidic chip model that can mimic normal arteries and stenotic arterial vessels, and studied the inhibitory effects of TMA on platelet aggregation, activation (P-selectin, GPIIb/IIIa, monocyte-platelet aggregates) and phosphatidyl serine (PS) exposure. In addition, we also investigated the effect of TMA on ADP and ristocetin-induced platelet aggregation by turbidimetry. The results showed that TMA significantly inhibited the platelet aggregation, activation and PS exposure induced by pathological high shear rate. Under static conditions, TMA can inhibit ADP and ristocetin-induced platelet aggregation. The results indicated that TMA mainly inhibited platelet aggregation, activation and PS exposure by inhibiting the binding of von Willebrand factor (vWF) to the GPIb/IX/V complex, and partially inhibited platelet aggregation through the platelet P2Y 12 -ADP receptor pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call