Abstract
Nucleic acid fragment analysis via separation and detection are routine operations in molecular biology. However, analysis of small single-stranded nucleic acid fragments (<100nt) is challenging and mainly limited to labor-intensive polyacrylamide gel electrophoresis or high-cost capillary electrophoresis methods. Here we report an alternative method, a microfluidic chip electrophoresis system that provides a size resolution of 5nt and a detection time of one minute per sample of fluorescence-labeled DNA/RNA fragments. The feasibility of this system was evaluated by quantifying CRISPR-Cas9 cleavage efficiency and the detection resolution was evaluated by analyzing ssDNA/RNA adenylation and phosphorylation. We employed this system to study the RNA capping efficiency and double-stranded DNA unwinding efficiency in isothermal amplification as two examples for assay design and evaluation. The microfluidic chip electrophoresis system provides a rapid, sensitive, and high-throughput fluorescence fragment analysis (FFA), and can be applied for enzyme characterization, reaction optimization, and product quality control in various molecular biology processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.