Abstract

The questions of assessment of achievable performance values of the integrated inertial-satellite navigation system complexed with odometer sensor and used for ground transport and agricultural technological vehicle are considered. Construction of relatively cheap modern navigation systems for ground transport and agricultural technological vehicles is provided by integrating diverse navigation systems, which include inertial-satellite systems that combine into a single hardware system the inertial and satellite modules. Achievable accuracy of gaining the navigation parameters is achieved by using special algorithms for processing of measurement information in combination with complexion of the system with an external source of additional information, where odometer sensor belongs. The most promising sensors are sensors, built using the technology of production of microelectromechanical systems - MEMS / MEMC (Micro-Electro Mechanical Systems). The navigation systems based on MEMS sensors have several advantages. The main advantages are small weight and size characteristics (volume less 1sm3, and weighs less than 1 gram), low power consumption, high reliability, resistance to vibro-impact loads (up to 2000g), easy integration of sensors and electronic modules of the navigation system, low cost. The main disadvantage is the need for the synthesis of complex algorithms of processing of measuring information to obtain the desired accuracy of the estimate of navigation parameters. The navigation system, where as MEMS sensors were used gyroscopes ADXRS-150 in conjunction with accelerometers ADXL-210 manufactured by Analog Devices, was considered. The main design and technological characteristics of sensors were shown, the selection criteria for sensors were formulated, technical and economic effect assessment of the use of MEMS in the navigation system is provided. The practical importance has the estimation of achievable accuracy characteristics of system under actual operating conditions. The paper presents the results of field tests of the navigation system based on MEMS sensors and designed for forklift carrying out transportation in the sea port. The results of experimental studies confirmed the effectiveness of the MEMS application as a sensing element of inertial-satellite navigation system of ground transport and agricultural technological vehicle that creates the foundation for the new high-tech developments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.