Abstract

Petrochemical industry is one of the major and rapidly growing industry that generates a variety of toxic and recalcitrant organic pollutants as by-products, which are not only harmful to the aquatic animals but also affects human health. The majority of the components of petrochemical wastewater (PW) are carcinogenic, genotoxic and phytotoxic in nature; hence, this complex wastewater generated from different petrochemical processes should be efficiently treated prior to its disposal in natural water bodies. The established technologies like advanced oxidation, membrane bioreactor, electrocoagulation and activated sludge process employed for the treatment of PW are highly energy intensive and incurs high capital and operation cost. Moreover, these technologies are not effective in completely eliminating petroleum hydrocarbons present in PW. Thus, to reduce the energy requirement and also to transform the chemical energy trapped in these organic matters present in this wastewater into bioelectricity and other value-added products, microbial electrochemical technologies (METs) can be efficaciously used, which would also compensate the treatment cost by transforming these pollutants into bioenergy and valuables. In this regard, this review elucidates the feasibility and application of different METs as an appropriate alternative for the treatment of PW. Furthermore, the numerous bottlenecks towards the real-life application and commercialization of pioneering METs have also been articulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.