Abstract

A novel tunable terahertz notch filter is demonstrated using antiresonant reflecting hollow waveguides with movable metal layers outside dielectric claddings. Based on the Fabry-Pérot resonance of the dielectric cladding, multiple deep notches are observed in a broad THz transmission spectrum. Continuous shift of notch frequencies is for the first time experimentally observed by lateral translation of metal layers from dielectric claddings. The measured maximum frequency-tuning-range approached 60GHz, equaling to 50% of the bandwidth of every passband, and a 20dB rejection notch-depth with a linewidth as narrow as 6GHz at frequency of around 0.2THz was also achieved. Numerical simulations match the measurements and verify the spectral-tuning mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call