Abstract
Objective. To evaluate a novel method of detecting and comparing the porosity of white Mineral Trioxide Aggregate and Portland cement at two different pH. Materials and methods. Cylindrical specimens (n = 120) were prepared from hydrated ordinary white Portland Cement (WPC) (n = 60) and white Mineral Trioxide Aggregate (WMTA) (n = 60) and exposed to environments with pH of 4.4 (n = 30) or 7.4 (n = 30). The pore size distribution and total pore volume were detected using Mercury Intrusion Porosimetry. Data were analyzed by analysis of variance and post-hoc Tukey or Tamhane test (p = 0.05). Results. The pore volume of WMTA was significantly lesser than WPC at both pH (p < 0.05). The surface tension of mercury was taken as 480 (N/m) and the contact angle 141.3° for both materials. Pores were consistently found in all specimens. Total pore volumes for WPC and WMTA (cubic centimeter/gram) were 0.1954 and 0.1023, respectively, while the diameter of the pores ranged from 50–100 Å and 20–50 Å, respectively. Conclusions. Mercury Intrusion Porosimetry technique is a promising and reliable technique for assessing the porosity of endodontic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.