Abstract

Lead (Pb) is normally considered as a trace element in soils and sediments for geochemical study. However, the concentration of Pb in firing range soils is generally so high that it should be considered as a major element during the evaluation of the soil geochemical properties. Soil organic matter (SOM) has been reported as one of the major factors to expedite the corrosion of metallic lead (Pb) in acidic and organic-rich soils. The main impacts of SOM on the fate and transport of Pb in firing range soils lie in the following two aspects; (1) the complexation of organic matter with Pb, which has received lots of attention, and; (2) changes in soil redox potential due to the transformation of SOM and its subsequent impact on Pb speciation, which has rarely been investigated. Soils from 6 different f a n g ranges are selected for this study. These samples have been stored under a closed condition for more than 3 years. The soil moisture contents were well-retained, as all the samples were kept in closed plastic buckets. The analytical data showed that the summation of the soil total organic carbon content (TOC) and inorganic carbon contents (TIC) were consistent with soil total carbon contents (TC) measured in previous years, although the TOC and TIC contents have changed respectively after years of storage. In general, it is observed that the soil TOC decreased against an increase of TIC. The mass balance on such a transformation suggested a major conversion of organic carbon (Corg) to inorganic carbon (CO32) in the stored soils. This kind of conversion could result in a significant change in soil redox potential (oxidation), which favoured Pb carbonation. At least, the presence of SOM could greatly affect the Pb weathering process (carbonation) in f~ing range soils under anaerobic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call