Abstract
Markov chain is a series of events in which the conditional probability upcoming events only depend on the current events and do not depend on the previous occurrence. Transition probabilities at the steady state level (steady state probability) is a transition probability that has reached equilibrium, so that it will not change with time or phase changes that occur. This paper determines the eigenvalue states and diagonalization to determine the steady state. The solution is obtained by peeling definitions and theorems. Key words: matrix, matrix diagonalization, Markov chain
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.