Abstract

In vivo study of nanomaterials is complicated by the physical and chemical changes induced in the nanomaterial by exposure to biological compartments. A diverse array of proteins can bind to the nanomaterial, forming a protein corona which may alter the dispersion, surface charge, distribution, and biological activity of the material. Evidence suggests that unique synthesis and stabilization strategies can greatly affect the composition of the corona, and thus, the in vivo properties of the nanomaterial. Protein and elemental analyses techniques are critical to characterizing the nature of the protein corona in order to best predict the in vivo behavior of the nanomaterial. Further, as described here, inductively coupled mass spectroscopy (ICP-MS) can also be used to quantify nanomaterial deposition in tissues harvested from exposed animals. Elemental analysis of ceria content demonstrated deposition of cerium oxide nanoparticles (CeNPs) in various tissues of healthy mice and in the brains of mice with a model of multiple sclerosis. Thus, ICP-MS analysis of nanomaterial tissue distribution can complement data illustrating the biological, and in this case, therapeutic efficacy of nanoparticles delivered in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call