Abstract

The selective adsorption of the components of a polydisperse gemini surfactant blend (alkylbenzenesulfonate-Jeffamine salt, ABSJ) in aqueous solution onto Berea sandstone, a reference material in enhanced oil recovery (EOR), was investigated. The individual adsorption isotherms of the four, benzene-ring containing ABSJ components with different alkyl chain lengths (ranging from decyl to tridecyl of the alkyl chain length) were simultaneously determined by using a four-channel electrospay ionization mass spectrometer (ESI-MS) for concentration analysis. This analytical device provided selective information (based on the differences in the mass to charge ratio) on the adsorption of each component in the mixed surfactant system. The overall isotherm obtained from the superposition of the individual isotherms determined by ESI-MS agreed well with the isotherm determined by UV spectrometry; the UV equipment is benzene-ring sensitive, irrespective of the alkyl chain length. The S-shaped isotherms reached a plateau at the critical micelle concentration. Longer-chain surfactants adsorbed preferentially over the short chain homologs, independently of solution concentration. This analytical device provided the net adsorption isotherm. Most analytical methods are not component selective, and thus they are not able to measure the individual isotherms in multicomponent solutions. Here, we report on a novel method which describes the selective determination of the individual adsorption isotherms of surfactants in a multicomponent mixture. The theoretical background of the method is described in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.