Abstract

In spite of the fact that the principles of impinging stream reactors have been developed for more than half a century, the performance analysis of such devices, from a viewpoint of the mathematical modeling, has not been investigated extensively. In this study two models are proposed to describe the drying performance of particulate materials in two-impinging stream dryers. The models are developed based on the Markov chain analysis and the tanks-in-series model. The required parameters for each model are determined by using RTD data obtained in a two-impinging stream dryer and the governing equations are solved numerically. Comparison of the results of the models with available experimental data shows that the stirred tanks-in-series model successfully explains the drying behavior in impinging stream dryers. Nevertheless, the results of the model that is developed based on the Markov chain analysis are not in exact agreement with corresponding experimental data because of the extremely short residence time of the particles inside the dryer. Also, the effects of some operating parameters on the performance of such dryers are investigated. The results indicate that the drying efficiency of the dryer increases when solid-to-gas flow rate ratio, initial moisture content, and diameter of the particles decrease and when the temperature of the carrier gas increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call