Abstract

BackgroundCorrectly identifying anaerobic bloodstream infections (BSIs) is difficult. However, a new technique, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), enables more accurate identification and appropriate treatment. Anaerobic BSIs identified by MALDI-TOF MS were retrospectively analyzed to determine the clinical and microbiological features and patient outcomes based on the anaerobic genera or group.MethodsMedical records of patients with anaerobic BSIs were used to conduct a single-center retrospective cohort study from January 2016 to December 2020 in Nagoya, Japan. Multivariate logistic regression analysis was performed to determine the independent risk factors for in-hospital mortality.ResultsOf the 215 patients with anaerobic BSIs, 31 had multiple anaerobic organisms in the blood culture, including 264 total episodes of anaerobic BSIs. Bacteroides spp. were isolated the most (n = 74), followed by gram-positive non-spore-forming bacilli (n = 57), Clostridium spp. (n = 52), gram-positive anaerobic cocci (GPAC) (n = 27), and gram-negative cocci (n = 7). The median patient age was 76 years; 56.7% were male. The most common focal infection site was intra-abdominal (36.7%). The in-hospital mortality caused by anaerobic BSIs was 21.3%, and was highest with Clostridium spp. (36.5%) and lowest with GPAC (3.7%). Age, solid tumors, and Clostridium spp. were independent risk factors for in-hospital mortality.ConclusionsWe identified current anaerobic BSI trends using MALDI-TOF MS and reported that mortality in patients with anaerobic BSIs patients was highest with Clostridium spp. infections.

Highlights

  • Identifying anaerobic bloodstream infections (BSIs) is difficult

  • A new technique, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), correctly identified 91.2% of anaerobic isolates at the species level compared to identification by 16S ribosomal RNA sequencing, which is considered the gold standard [5]

  • As the mortality rate is higher for patients with inadequate antimicrobial therapy [6], MALDI-TOF MS enables a more accurate microbiologic identification of anaerobic BSIs, allowing for appropriate treatment

Read more

Summary

Introduction

Identifying anaerobic bloodstream infections (BSIs) is difficult. A new technique, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), enables more accurate identification and appropriate treatment. Anaerobic BSIs identified by MALDI-TOF MS were retrospectively analyzed to determine the clinical and microbiological features and patient outcomes based on the anaerobic genera or group. Anaerobic bloodstream infections (BSIs) are implicated in 4–10.4% of bacteremic episodes with a high. A new technique, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), correctly identified 91.2% of anaerobic isolates at the species level compared to identification by 16S ribosomal RNA (rRNA) sequencing, which is considered the gold standard [5]. As the mortality rate is higher for patients with inadequate antimicrobial therapy [6], MALDI-TOF MS enables a more accurate microbiologic identification of anaerobic BSIs, allowing for appropriate treatment

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call