Abstract

The layer-by-layer assembly technique was used to synthesize novel multiwalled carbon nanotubes (MWCNTs) on magnetic carbon (Fe3O4@C) nanospheres, which were then used to extract six perfluoroalkyl substances (PFAS) in environmental real water samples using ultra high-performance liquid chromatography coupled to tandem mass spectrometry. The as-synthesized sorbent MWCNTs@Fe3O4@C was employed for magnetic solid-phase extraction (MSPE). The as-prepared MWCNTs@Fe3O4@C was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The main extraction parameters were systematically optimized by Box-Behnken design. Under optimal conditions, excellent results were achieved. The synthesized sorbent showed wide linear ranges (0.1–1000 ng L−1), low detection limits (0.03–0.09 ng L−1) and good repeatability (3.80%–9.52%) for extracting and detecting six PFAS. The developed method was also applied to analyze six PFAS from environmental water samples. This study indicated that MWCNTs@Fe3O4@C composites are promising materials for the extraction and determination of PFAS from water samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.