Abstract

The overuse and misuse of antibiotics in animal breeding for disease treatment and growth enhancement have been major drivers of the occurrence, diffusion, and accumulation of antibiotic resistance genes (ARGs) in wastewater. Strategies to combat ARG dissemination are pressingly needed for human and ecological safety. To achieve this goal, a biochar-based polymer, magnetic biochar/quaternary phosphonium salt (MBQ), was applied in livestock wastewater and displayed a high performance in bacterial deactivation and ARG decrease. Efficient antibacterial effects were achieved by both MBQ and quaternary phosphonium salt; however, the abundance and fold change of ARGs in the MBQ treatment indicated a more powerful ARG dissemination control than quaternary phosphonium salt. The application of MBQ evidently reduced the microbial diversity and may primarily be responsible for altering the ARG profiles in wastewater. Network, redundancy, and variation partitioning analyses were further employed to reveal that the microbial community and the presence of mobile genetic elements were two critical factors shaping the pattern of the antibiotic resistome in livestock wastewater. Considered together, these findings extend the application field of biochar and have important implications for reducing ARG dissemination risks in livestock wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.