Abstract

The continuing increase in data processing power in modern devices and the availability of a vast amount of data via the internet and the internet of things (sensors, monitoring systems, financial records, health records, social media, etc.) enabled the accelerated development of machine learning techniques. However, the collected data can be inconsistent, incomplete, and noisy, leading to a decreased confidence in data analysis. The paper proposes a novel “judgmental” approach to evaluating the measurement uncertainty of the machine learning model that implements the dropout additive regression trees algorithm. The considered method uses the procedure for expressing the type B measurement uncertainty and the maximal value of the empirical absolute loss function of the model. It is related to the testing and monitoring of power equipment and determining partial discharge location by the non-iterative, all-acoustic method. The example uses the dataset representing the correlation of the mean distance of partial discharge and acoustic sensors and the temperature coefficient of the sensitivity of the non-iterative algorithm. The dropout additive regression trees algorithm achieved the best performance based on the highest coefficient of determination value. Most of the model’s predictions (>97%) fell into the proposed standard measurement uncertainty interval for both “seen” and “unseen” data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call