Abstract

The design of stud connectors is aided by determining the relationship between shear strength and the input variables (number, diameter, height, tensile strength and elastic modulus of the studs, and compressive strength and elastic modulus of the concrete) that influence strength. Since strength is nonlinearly related to the influencing variables, which makes the predictions of the relevant empirical equations unreliable, the use of machine learning (ML) models is preferred. The prediction results of eight machine learning models were evaluated, including linear regression (LR1), ridge regression (RR), lasso regression (LR2), back-propagation artificial neural network (BP ANN), genetic algorithm optimized BP ANN (GA-BP ANN), extreme learning machines (ELM), random forests (RF), and support vector machines (SVM). The results show that the GA-BP ANN model is the most accurate model for prediction with a mean absolute percentage error (MAPE) of 6.17% and an R2 of 0.9599. Based on the GA-BP ANN model and the global sensitivity analysis (GSA) method, a new parameter importance analysis method was developed to compare the magnitude of the effect of different input variables on strength. It was found that stud diameter had the greatest effect on shear strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.