Abstract
For the data challenge of the 2022 European PHM conference, data from a production line of electric circuit boards is provided to assess the quality of the produced components. The solution presented in this paper was elaborated to fulfill the data challenge objectives of predicting defects found in an automatic inspection at the end of the production line, predicting the result of a following human inspection and predicting the result of the repair of the defect components. Machine learning methods are used to accomplish the different prediction tasks. In order to build a reliable machine learning model, the steps of data preparation, feature engineering and model selection are performed. Finally, different models are chosen and implemented for the different sub-tasks. The prediction of defects in the automatic inspection is modeled with a multi-layer perceptron neural network, the prediction of human inspection is modeled using a random forest algorithm. For the prediction of human repair, a decision tree is implemented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.