Abstract

Summary This paper presents a deep neural network (DNN) approach designed to estimate the milk yield of Holstein-Friesian cattle. The DNN comprised stacked dense (fully connected) layers, each hidden layer followed by a dropout layer. Various configurations of the DNN were tested, incorporating 2 and 3 hidden layers containing 8 to 54 neurons. The experiment involved testing the DNN with different activation functions such as the sigmoid, tanh, and rectified linear unit (ReLU). The dropout rates ranging from 0 to 0.3 were employed, with the output layer using a linear activation function. The DNN models were trained using the Adam, SGD, and RMSprop optimizers, with the root mean square error serving as the loss metric. The training dataset comprised information from a unique database containing records of dairy cows in the Republic of Serbia, totaling 3,406 cows. The input parameters (a total of 27) for the DNN included breeding and milk yield data from the cow’s mother, as well as the father’s ID, whereas the output parameters (a total of 8) consisted of milk yield parameters (a total of 3) and breeding parameters of the cow (a total of 5). Training iterations were conducted using a batch size of 8 over 500, 1000, and 5000 epochs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.