Abstract

Background: To assess the effectiveness of inhalation therapy, it is important to evaluate the lungs' structure; thus, visualization of the entire lungs at the level of the alveoli is necessary. To achieve this goal, the applied visualization technique must satisfy the following two conditions simultaneously: (1) it has to obtain images of the entire lungs, since one part of the lungs is influenced by the other parts, and (2) the images have to capture the detailed structure of the alveolus/acinus in which gas exchange occurs. However, current visualization techniques do not fulfill these two conditions simultaneously. Segmentation is a process in which each pixel of the obtained high-resolution images is simplified (i.e., the representation of an image is changed by categorizing and modifying each pixel) so that we can perform three-dimensional volume rendering. One of the bottlenecks of current approaches is that the accuracy of the segmentation of each image has to be evaluated on the outcome of the process (mainly by an expert). It is a formidable task to evaluate the astronomically large numbers of images that would be required to resolve the entire lungs in high resolution. Methods: To overcome this challenge, we propose a new approach based on machine learning (ML) techniques for the validation step. Results: We demonstrate the accuracy of the segmentation process itself by comparison with previously validated images. In this ML approach, to achieve a reasonable accuracy, millions/billions of parameters used for segmentation have to be optimized. This computationally demanding new approach is achievable only due to recent dramatic increases in computation power. Conclusion: The objective of this article is to explain the advantages of ML over the classical approach for acinar imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.