Abstract
Users on the Internet usually require venues to provide better purchasing recommendations. This can be provided by a reputation system that processes ratings to provide recommendations. The rating aggregation process is a main part of reputation systems to produce global opinions about the product quality. Naive methods that are frequently used do not consider consumer profiles in their calculations and cannot discover unfair ratings and trends emerging in new ratings. Other sophisticated rating aggregation methods that use a weighted average technique focus on one or a few aspects of consumers’ profile data. This paper proposes a new reputation system using machine learning to predict reliability of consumers from their profile. In particular, we construct a new consumer profile dataset by extracting a set of factors that have a great impact on consumer reliability, which serve as an input to machine learning algorithms. The predicted weight is then integrated with a weighted average method to compute product reputation score. The proposed model has been evaluated over three MovieLens benchmarking datasets, using 10-folds cross validation. Furthermore, the performance of the proposed model has been compared to previous published rating aggregation models. The obtained results were promising which suggest that the proposed approach could be a potential solution for reputation systems. The results of the comparison demonstrated the accuracy of our models. Finally, the proposed approach can be integrated with online recommendation systems to provide better purchasing recommendations and facilitate user experience on online shopping markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.