Abstract
Since the 1980s, machine learning has attracted extensive attention in the field of artificial intelligence. Following the expert system, it opened a precedent for the application of machine learning in the field of artificial intelligence and became one of the important topics of artificial intelligence. However, in the field of volleyball, the application of machine learning and information technology in volleyball is extremely limited. Volleyball has not developed widely in society nor has it become a common event in people’s daily life. Therefore, the development of volleyball in China lags behind. Unlike other sports, volleyball requires both strong skills and playing tactics. While taking into account the technical and tactical aspects, the requirements for the comprehensive quality and learning ability of both sides of the teaching are relatively strict. If the application of modern information technology is neglected, it may affect the teaching effect of volleyball and hinder the long-term spread of volleyball. The article starts with the serving, landing, and blocking of two groups of volleyball players with different sports levels. Through the application of machine learning and digital information technology in volleyball, as well as the use of artificial neural networks and genetic algorithms, the reaction time and accuracy of judging serving, landing, and blocking are improved, and specific application strategies are further proposed. According to the influence of athletes of different levels on the cognition of volleyball landing points, it can be seen that there are three parts that account for 40% of the allocation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.