Abstract
Tehran, the most crowded city in Iran, suffers from severe air pollution, particularly during the cold months. This research endeavored to examine the statistical relationships between criteria air pollutants (CO, NO2, SO2, O3, PM10, and PM2.5) and meteorological elements (temperature, rainfall, wind speed, relative humidity, air pressure, sunshine hours, solar radiation, and cloudiness), as well as assess and compare the efficacy of six different algorithms (multiple linear regression (MLR), generalized additive model (GAM), classification and regression trees (CART), random forest (RF), gradient boosting machine (GBM), and deep learning (DL)) in modeling pollutants and climatic factors responsible for variations in Tehran's air pollution levels from 2001 to 2021 using R 4.3.2 software. The results of this study showed that O3 was strongly affected by weather conditions, while other pollutants were mainly influenced by each other than by meteorological parameters and more extensive research is required to pinpoint the precise impact of human activity on these pollutant levels in Tehran. Also based on the predictive model performance evaluation and concerning the principle of parsimony, in half of the cases, the MLR outperformed other models, despite its seeming simplicity and principal assumptions dependence. In other situations, the GAM was a good substitute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.