Abstract
Mortality and predation of tagged fishes present a serious challenge to interpreting results of acoustic telemetry studies. There is a need for standardized methods to identify predated individuals and reduce the impacts of "predation bias" on results and conclusions. Here, we use emerging approaches in machine learning and acoustic tag technology to classify out-migrating Atlantic salmon (Salmo salar) smolts into different fate categories. We compared three methods of fate classification: predation tag pH sensors and detection data, unsupervised k-means clustering, and supervised random forest combined with tag pH sensor data. Random forest models increased predation estimates by 9-32% compared to relying solely on pH sensor data, while clustering reduced estimates by 3.5-30%. The greatest changes in fate class estimates were seen in years with large class imbalance (one or more fate classes underrepresented compared to the others) or low model accuracy. Both supervised and unsupervised approaches were able to classify smolt fate; however, in-sample model accuracy improved when using tag sensor data to train models, emphasizing the value of incorporating such sensors when studying small fish. Sensor data may not be sufficient to identify predation in isolation due to Type I and Type II error in predation sensor triggering. Combining sensor data with machine learning approaches should be standard practice to more accurately classify fate of tagged fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.