Abstract

ObjectiveOsteoporosis is a common skeletal disease that greatly increases the risk of pathologic fractures and accounts for approximately 700,000 vertebral compression fractures (VCFs) annually in the United States. Cement augmentation procedures such as balloon kyphoplasty (KP) and percutaneous vertebroplasty (VP) have demonstrated efficacy in the treatment of VCFs, however, some studies report rates of readmission as high as 10.8% following such procedures. The purpose of this study was to employ Machine Learning (ML) algorithms to predict 30-day hospital readmission following cement augmentation procedures for the treatment of VCFs using the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. MethodsACS-NSQIP was queried to identify patients undergoing either KP or VP from 2011 to 2014. Three ML algorithms were constructed and tasked with predicting post-operative readmissions within this cohort of patients. Results: Postoperative pneumonia, ASA Class 2 designation, age, partially-dependent functional status, and a history of smoking were independently identified as highly predictive of readmission by all ML algorithms. Among these variables postoperative pneumonia (p < 0.01), ASA Class 2 designation (p < 0.01), age (p = 0.002), and partially-dependent functional status (p < 0.01) were found to be statistically significant. Predictions were generated with an average AUC value of 0.757 and an average accuracy of 80.5%. ConclusionsPostoperative pneumonia, ASA Class 2 designation, partially-dependent functional status, and age are perioperative variables associated with 30-day readmission following cement augmentation procedures. The use of ML allows for quantification of the relative contributions of these variables toward producing readmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.